Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme.
نویسندگان
چکیده
Metal ions are essential cofactors for various ribozymes. Here we dissect the roles of metal ions in an aminoacyl-tRNA synthetase-like ribozyme (ARS ribozyme), which was evolved in vitro. This ribozyme can charge phenylalanine on tRNA in cis, where it is covalently attached to the 5'-end of tRNA (i.e. a form of precursor tRNA), as well as in trans, where it can act as a catalyst. The presence of magnesium ion is essential for this ribozyme to exhibit full catalytic activity. Metal-dependent kinetics, as well as structural mappings using Tb3+ in competition with Mg2+ or Co(NH3)6(3+), identified two potential metal-binding sites which are embedded near the tRNA-binding site. The high affinity metal-binding site can be filled with either Mg2+ or Co(NH3)6(3+) and thus the activity relies on a metal ion that is fully coordinated with water or ammonium ions. This site also overlaps with the amino acid-binding site, suggesting that the metal ion plays a role in constituting the catalytic core. The weak metal-binding site is occupied only by a metal ion(s) that can form innersphere contacts with ligands in the ribozyme and, hence, Mg2+ can enhance ribozyme activity, but Co(NH3)6(3+) cannot. The experiments described in this work establish the roles of metal ions that have distinct coordination properties in the ARS ribozyme.
منابع مشابه
Mutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive Intellectual Disability
Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...
متن کاملMINAS—a database of Metal Ions in Nucleic AcidS
Correctly folded into the respective native 3D structure, RNA and DNA are responsible for uncountable key functions in any viable organism. In order to exert their function, metal ion cofactors are closely involved in folding, structure formation and, e.g. in ribozymes, also the catalytic mechanism. The database MINAS, Metal Ions in Nucleic AcidS (http://www.minas.uzh.ch), compiles the detailed...
متن کاملStructure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.
Methanogenic archaea possess unusual seryl-tRNA synthetase (SerRS), evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. The two types of SerRSs show only minimal sequence similarity, primarily within class II conserved motifs 1, 2 and 3. Here, we report a 2.5 A resolution crystal structure of the atypical methanogenic Methanosarcina barkeri SerRS and its com...
متن کاملConcurrent molecular recognition of the amino acid and tRNA by a ribozyme.
We have recently reported an in vitro-evolved precursor tRNA (pre-tRNA) that is able to catalyze aminoacylation on its own 3'-hydroxyl group. This catalytic pre-tRNA is susceptible to RNase P RNA, generating the 5'-leader ribozyme and mature tRNA. The 5'-leader ribozyme is also capable of aminoacylating the tRNA in trans, thus acting as an aminoacyl-tRNA synthetase-like ribozyme (ARS-like riboz...
متن کاملAminoacyl-tRNA synthetase-induced cleavage of tRNA.
Aminoacyl-tRNA synthetases interact with their cognate tRNAs in a highly specific fashion. We have examined the phenomenon that upon complex formation E. coli glutaminyl-tRNA synthetase destabilizes tRNA(Gln) causing chain scissions in the presence of Mg2+ ions. The phosphodiester bond cleavage produces 3'-phosphate and 5'-hydroxyl ends. This kind of experiment is useful for detecting conformat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 30 23 شماره
صفحات -
تاریخ انتشار 2002